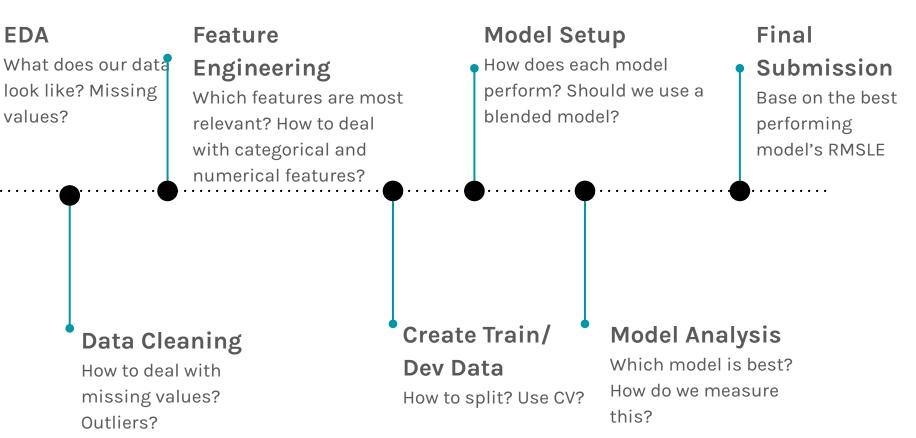
W207 Final Project Predicting Sale Price

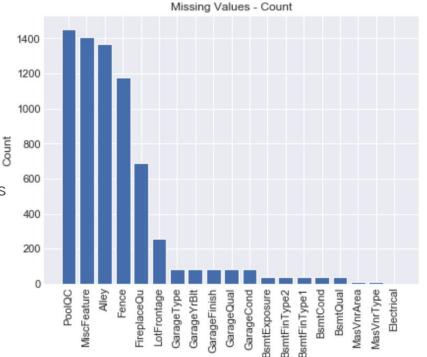
Allison Godfrey, Jacky Ma, Surya Gutta, and Ian Anderson

Overview of our process



EDA and Data Cleaning: General Approach

- Look at shape of data
 - Train (80 features, 1,460 examples)
 - Test (79 features, 1,459 examples)
- Missing Values
 - See histogram
- Look at data structure
 - Mix of categorical and quantitative features
- Use Median for Outliers
 - GrLivArea > 4000 and SalePrice < 200000
 - Total_sf > 60000 and SalePrice < 200000
 - LotFrontage > 200
 - GarageArea > 1200 and SalePrice < 300000



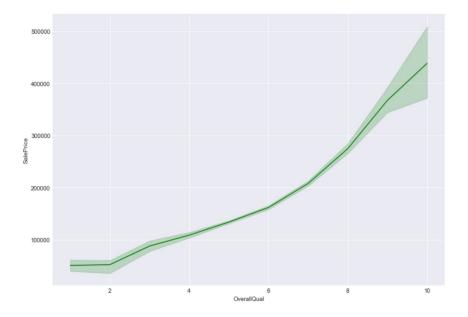
An iterative process...

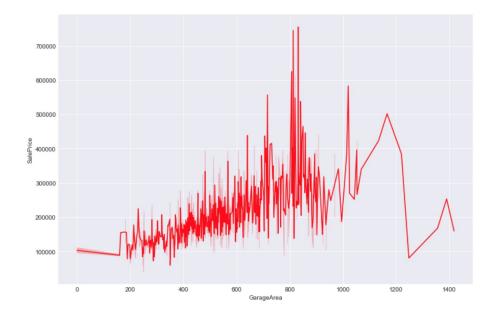
Dealing with Missing Values	Encoding Non-Numerical Variables	Feature Selection	Selecting N	Nodels	Other
Exclude all columns with > 10% missing values	LabelEncoder()	No manual feature selection	Adaboost (base estimator = LR	Random Forest	Find and label duplicates
Fill missing categorical values with NA	Hot_encode()	Take 20 most correlated features	Bayesian Ridge	Xgboost (base estimator = BR)	Use log scale for Sale Price
Fill missing categorical values with the most common category	Convert_ordinals()	Add and delete features and evaluate RMSE	Lasso Lars	Ridge	Use log scale for skewed features
Fill missing numerical values with 0		Use L1 and L2 for model feature selection	Elastic Net	Thielsen	Use 5-fold cross validation instead of 80-20 split
Fill all missing numerical values with the median value		Remove multicollinear variables	ARD	Blended Model	Tuning Hyperparameters for each model through CV
Fill select features' missing values with median or mode		Include features with Spearman Rank > abs(0.05)			Manually sift through data points whose predictions are most off & adjust features

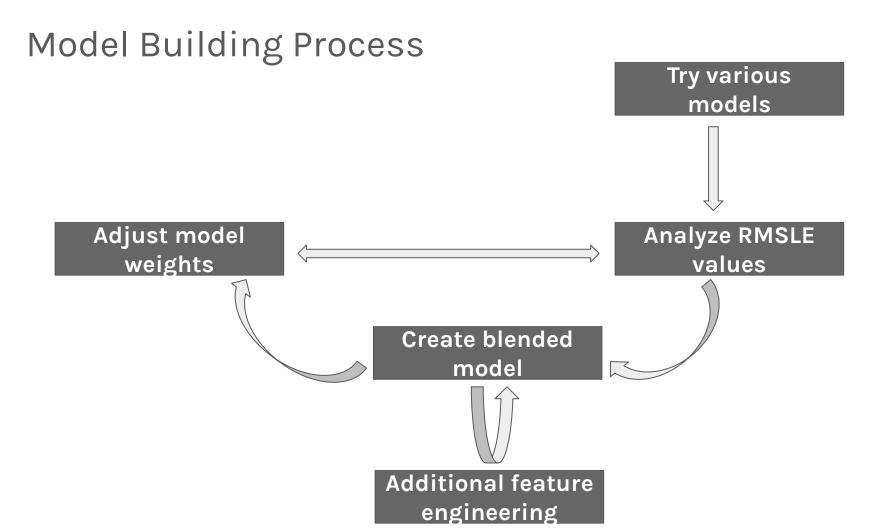
Features Chosen

1stFlrSF	ExterQual	GarageType_Detc	MasVnrType_Ston	total_sf
2ndFlrSF	FireplaceQu_Gd	GrLivArea	MSSubClass_X	TotRmsAbvGrd
BldgType_X	FireplaceQu_NA	has_fireplace	MSZoning_RM	WoodDeckSF
BsmtExposure	Fireplaces	HeatingQC	Neighborhood_X	YearBuilt
BsmtFinSF1	Foundation_X	house_age	OverallCond	YearRemodAdd
BsmtQual_X	FullBath	KitchenQual	OverallQual	GarageFinish
GarageType_Attc	Functional	LotArea	SaleCondition_Pa rtial	
SaleType_X	GarageArea	LotFrontage	SaleType_New	
YrSold_X	GarageCars	LotShape	total_baths	
TotalBsmtSF	total_porch_sf	MasVnrType_Non	MasVnrArea	

A closer look at specific features







Converting Categorical/Ordinal Variables

```
# LotShape: General shape of property
lot_shape = {
    'Reg': 4, # Regular
    'IR1': 3, # Slightly irregular
    'IR2': 2, # Moderately Irregular
    'IR3': 1 # Irregular
```

```
def hot_encode(data):
    categorical_cols = data.select_dtypes(include=
['object'])
    return pd.get_dummies(data, columns = categoric
al_cols.columns)
```

```
test_new = hot_encode(test_new)
train_new = hot_encode(train_new)
train_new.head()
```

Using CV and tuning parameters

```
#Validation function
def cross_validation(model):
    kf = KFold(5, shuffle=True, random_state=42).get_n_splits(train_data)
    rmse= np.sqrt(abs(cross_val_score(model, train_data, train_labels, scoring="neg_mean_squared_e"
rror", cv = kf)))
    return(rmse)
```

```
def parameter_tuning(model, parameters):
    clf = GridSearchCV(
        model, parameters, cv=5,scoring='neg_mean_squared_error', n_jobs = 5)
    clf.fit(train_data,train_labels)
    print(clf.best_params_)
    print(np.sqrt(-clf.best_score_))
```

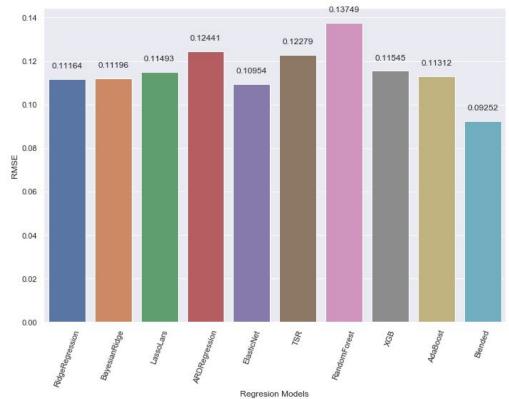
Choosing the final weights

```
regression models = {
    'AdaBoost': { 'weight': 0.125, 'model': ada model fit },
    'XGB': { 'weight': 0.1, 'model': xgb model fit },
    'BayesianRidge': { 'weight': 0.125, 'model': br model fit },
    'RidgeRegression': { 'weight': 0.125, 'model': rr model fit },
    'TSR': { 'weight': 0.125, 'model': trs model fit },
    'RandomForest': { 'weight': 0.025, 'model': rfr model fit },
    'ARDRegression': { 'weight': 0.125, 'model': ardr model fit },
    'ElasticNet': {'weight': 0.125, 'model': en model fit},
    'LassoLars': { 'weight': 0.125, 'model': ll model fit },
```

Comparing the Models

While our RMSLE decreases with model adjustments, our score in Kaggle stays relatively constant

Are we overfitting our train data?



Our Best Kaggle Submission (with one last additional hack)

- **RMSLE: 0.11725**
- Place: 512

Some Future Improvements

- Further feature selection, specifically choosing the hot encoded variables to include
- More tuning of Blended Model weights
- More parameter tuning on individual models
- Evaluate PCA
- Since we know neighborhood and street, we could utilize school ratings data

Questions?